CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells.
نویسندگان
چکیده
Cancer stem cells or cancer initiating cells are believed to contribute to cancer recurrence after therapy. MicroRNAs (miRNAs) are short RNA molecules with fundamental roles in gene regulation. The role of miRNAs in cancer stem cells is only poorly understood. Here, we report miRNA expression profiles of glioblastoma stem cell-containing CD133(+) cell populations. We find that miR-9, miR-9(*) (referred to as miR-9/9(*)), miR-17 and miR-106b are highly abundant in CD133(+) cells. Furthermore, inhibition of miR-9/9(*) or miR-17 leads to reduced neurosphere formation and stimulates cell differentiation. Calmodulin-binding transcription activator 1 (CAMTA1) is a putative transcription factor, which induces the expression of the anti-proliferative cardiac hormone natriuretic peptide A (NPPA). We identify CAMTA1 as an miR-9/9(*) and miR-17 target. CAMTA1 expression leads to reduced neurosphere formation and tumour growth in nude mice, suggesting that CAMTA1 can function as tumour suppressor. Consistently, CAMTA1 and NPPA expression correlate with patient survival. Our findings could provide a basis for novel strategies of glioblastoma therapy.
منابع مشابه
Novel Anti-Apoptotic MicroRNAs 582-5p and 363 Promote Human Glioblastoma Stem Cell Survival via Direct Inhibition of Caspase 3, Caspase 9, and Bim
Glioblastoma is the most common and lethal primary brain tumor. Tumor initiation and recurrence are likely caused by a sub-population of glioblastoma stem cells, which may derive from mutated neural stem and precursor cells. Since CD133 is a stem cell marker for both normal brain and glioblastoma, and to better understand glioblastoma formation and recurrence, we looked for dys-regulated microR...
متن کاملGenome-Wide Profiling Identified a Set of miRNAs that Are Differentially Expressed in Glioblastoma Stem Cells and Normal Neural Stem Cells
A major challenge in cancer research field is to define molecular features that distinguish cancer stem cells from normal stem cells. In this study, we compared microRNA (miRNA) expression profiles in human glioblastoma stem cells and normal neural stem cells using combined microarray and deep sequencing analyses. These studies allowed us to identify a set of 10 miRNAs that are considerably up-...
متن کاملHCMV-encoded miR-UL112-3p promotes glioblastoma progression via tumour suppressor candidate 3
Glioblastoma (GBM) is the most prevalent and lethal type of primary malignant brain tumour. Recent studies suggest that the discovery of human cytomegalovirus (HCMV)-encoded microRNAs (miRNAs) might play a role in the pathogenesis of diseases, including GBM. In this study, we aimed to analyse the expression and function of HCMV-encoded miRNAs in GBM. We found that miR-UL112-3p expression was si...
متن کاملMiR-9 Promotes Apoptosis Via Suppressing SMC1A Expression in GBM Cell Lines
OBJECTIVE Glioblastomas multiforme (GBM) is the most malignant brain cancer, which presented vast genomic variation with complicated pathologic mechanism. METHOD MicroRNA is a delicate post-transcriptional tuner of gene expression in the organisms by targeting and regulating protein coding genes. MiR-9 was reported as a significant biomarker for GBM patient prognosis and a key factor in regul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 30 20 شماره
صفحات -
تاریخ انتشار 2011